导入数据...
秦雯
时间:2025-02-25 15:49:06   来源:四川师范大学计算机科学学院   查看:5052

 

 

个人简介

秦雯,女,博士,现为四川师范大学计算机科学学院讲师,硕士生导师,于2024年获得重庆邮电大学计算机科学与技术专业博士学位;学术研究主要集中在大数据智能计算领域,专注于图表示学习、大规模数据应用的并行算法设计等方向,在IEEE T.FSIEEE T.BDIEEE T.ASE等国际著名期刊和会议上发表SCI/EI检索论文8篇;申请国家发明专利3项,已授权1项;同时,还担任IEEE T.ASENeurocomputingIEEE/CAA JAS等国际著名学术会议和期刊等审稿人。

 

代表性论文

[1]      QIN W, LUO X. Asynchronous parallel fuzzy stochastic gradient descent for high-dimensional incomplete data representation. IEEE Transactions on Fuzzy Systems, 2024, 32(2): 445-459. (中科院一区,CCF-B)

[2]      QIN W, LUO X, LI S, et al. Parallel adaptive stochastic gradient descent algorithms for latent factor analysis of high-dimensional and incomplete industrial data. IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2023.3267609. (中科院二区,CCF-B)

[3]      QIN W, LUO X, ZHOU M C. Adaptively-accelerated parallel stochastic gradient descent for high-dimensional and incomplete data representation learning. IEEE Transactions on Big Data, 2024, 10(1): 92-107. (中科院二区)

[4]      LUO X, QIN W, DONG A, et al. Efficient and high-quality recommendations via momentum-incorporated parallel stochastic gradient descent-based learning. IEEE CAA Journal Automatica Sinica, 2021, 8(2): 402- 411. (中科院一区)

[5]      QIN W, LUO X. An asynchronously alternative stochastic gradient descent algorithm for efficiently parallel latent feature analysis on shared-memory. 2022 IEEE International Conference on Knowledge Graph, 2022: 217-224.

[6]      QIN W, LUO X, ZHOU M C. Adaptive Alternating Stochastic Gradient Descent Algorithms for Large-Scale Latent Factor Analysis. 2021 IEEE International Conference on Services Computing, 2021: 285-290. (CCF-C).

 

备注

欢迎对大数据分析、图表示学习、并行计算等感兴趣的同学联系我。联系邮箱:qinwen@sicnu.edu.cn。期待同学们的加入,共同进步!!!

编辑:计算机科学学院