导入数据...
冯鑫儒
时间:2025-02-25 14:43:23   来源:四川师范大学计算机科学学院   查看:1951


冯鑫儒

讲师,硕士生导师

邮箱:xrfeng@sicnu.edu.cn

个人简介Personal Profile

冯鑫儒,女,博士,现任四川师范大学计算机科学学院讲师。20239月获得西南交通大学信息与通信工程博士学位(师从李恒超教授)。主要研究方向为高光谱图像分析和处理 (Hyperspectral image analysis and processing)。至今,已在遥感领域的顶级和权威期刊及会议发表了近十篇学术论文,包括IEEE TGRSIEEE JSTARSIEEE GRSL等。同时,还担任IEEE TGRS等国际期刊的审稿人。

教育经历Education Background

(1) 2016-09 2023-09, 西南交通大学, 信息与通信工程, 博士

(2) 2012-09 2016-06, 西南交通大学, 通信工程, 学士

学术论文 Publications

(1) Heng-Chao Li, Xin-Ru Feng*, Rui Wang, Lianru Gao, and Qian Du, “Superpixel-based low-rank tensor factorization for blind nonlinear hyperspectral unmixing,” IEEE Sensors Journal, vol. 24, no. 8, pp. 13 055–13 072, 2024.

(2) Si-Jia Xiang, Heng-Chao Li, Jing-Hua Yang, Xin-Ru Feng*, “Dual auto-weighted multi-view clustering via autoencoder-like nonnegative matrix factorization,” Information Sciences, vol. 24, no. 8, pp. 13 055–13 072, 2024.

(3) Heng-Chao Li, Xin-Ru Feng*, Dong-Hai Zhai, Qian Du, Antonio Plaza, Self-Supervised Robust Deep Matrix Factorization for Hyperspectral Unmixing,” IEEE Transactions on Geoscience and Remote Sensing, 2022, 60.

(4) Xin-Ru Feng, Heng-Chao Li*, Rui Wang, Qian Du, Xiuping Jia, and Antonio Plaza, “Hyperspectral unmixing based on nonnegative matrix factorization: A comprehensive review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 4414–4436, 2022.

(5) Xin-Ru Feng, Heng-Chao Li*, Shuang Liu, and Hongyan Zhang, “Correntropy-based autoencoder-like NMF with total variation for hyperspectral unmixing,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, Art no. 5500505.

(6) Xin-Ru Feng, Heng-Chao Li*, Jun Li, Qian Du, Antonio Plaza, and William J. Emery, “Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6245–6257, Oct. 2018.

(7) Heng-Chao Li, Shuang Liu, Xin-Ru Feng*, Rui Wang and Yong-Jian Sun, “Double weighted sparse nonnegative tensor factorization for hyperspectral unmixing,” International Journal of Remote Sensing, vol. 42, no. 8, pp. 3180–3191, 2021.

(8) Heng-Chao Li, Shuang Liu, Xin-Ru Feng, and Shao-Quan Zhang, “Sparsity-constrained coupled nonnegative matrix–tensor factorization for hyperspectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 5061–5073, 2020.

(9) Xin-Ru Feng, Heng-Chao Li*, and Rui Wang, “Hyperspectral unmixing based on sparsity constrained nonnegative matrix factorization with adaptive total variation,” IEEE International Geoscience and Remote Sensing Symposium, 2139–2142, 2019.

 

编辑:计算机科学学院